Pseudoscorpions! Small, strange arachnids

Yes, this is a blog about spiders, and no, pseudoscorpions are not spiders. But they are members of the class Arachnida, like spiders, and fascinating, like spiders! I encountered them for the first time on a recent trip to the Okanagan with Sean, so here’s a post about some of their natural history.


Two tiny pseudoscorpions Sean and I found while doing some rock flipping on a hillside near Vaseux Lake, BC. Photo: Sean McCann

Pseudoscorpions are really weird, and really awesome, creatures. Their name means “false scorpion” (which is also a common name for this order of arachnids), because superficially they look a lot like scorpions (members of another arachnid order), minus the “tail” with its stinger on the end.


Drawings of a pseudoscorpion and a scorpion from JH Comstock’s book. The illustrations are most likely by Anna C. Stryke, but possibly by Mrs. Comstock. Note that the scale is different for each drawing.

Pseudoscorpions are tiny. The one below (photographed under a microscope) is only about 1 mm long! The largest pseudoscorpions can get as long as 10 mm. Their small size means they can live in tight spaces, like between floorboards, under tree bark, or even under the elytra (hardened forewings) of beetles – but more on this later.


Pseudoscorpion found in Vero Beach, FL. Photo: Sean McCann

Pseudoscorpion morphology is strange. Like other arachnids, pseudoscorpions have two main body segments: a cephalothorax (the front part, a combined head-and-thorax bearing all of their appendages), and an abdomen. They may have one or two pairs of simple eyes on the sides of the cephalothorax (or none at all) and their vision is generally poor. As well as four pairs of legs, they have enormous chelate (pincer-like) pedipalps that they use for capturing prey and sensing their environment.


A neobisiid pseudoscorpion nicely displaying its chelate jaws and pedipalps. Photo: Marshal Hedin, licensed under CC BY-NC 2.0.

Order Pseudoscorpionida

Pincer-like chelicera (singular of chelicerae) of a pseudoscorpion, bearing spinnerets on the movable finger. From Comstock’s book.


Their jaws (called chelicerae) are also like miniature pincers. Like spiders, pseudoscorpions can produce silk. Unlike spiders, who have abdominal silk glands and spinnerets, pseudoscorpions’ silk glands are in their cephalothoraxes, and their spinnerets are on the tips of their chelicerae! (The spitting spiders in the family Scytotidae are exceptional among spiders in also having silk glands in their cephalothoraxes, and “spitting” the silk out of their fangs along with venom.)

Pseudoscorpions use silk to build retreats* or cocoons for moulting, overwintering, and sometimes brooding their young.

Also like spiders, many pseudoscorpions use venom to subdue their prey, which includes mites and other tiny arthropods. The venomous pseudoscorpions are in suborder Iocheirata, which means “poison hands”. Their venom glands are in their modified pedipalps, with openings in the tips of one or both of the fingers of their claws.


To me, pseudoscorpion anatomy is all topsy-turvy (at least compared to spiders):        their silk comes out the wrong end and their venom comes out of clawed “hands” instead of fangs. 


Pseudoscorpion – modified from the illustration in Comstock’s book.

Pseudoscorpions also have pretty strange reproduction. Males deposit a spermatophore (a package of sperm) on the ground, which a female must then pick up and insert into her reproductive opening. Males of different kinds of pseudoscorpions have various methods of ensuring that a female finds and uses their sperm. Some are carefree: the male deposits the spermatophore, walks away and (figuratively) crosses his fingers and hopes that a female will encounter it by chance. Other tactics are rather more direct and reliable: the male engages the female in an elaborate “mating dance” and eventually pulls her over his spermatophore to ensure that she picks it up. In one species, Serianus carolinensis, males only produce spermatophores when a female is nearby, then they spin special silk webs that direct her to the package.

Once a female’s eggs are fertilized, she keeps them in a brood pouch under her abdomen (or sometimes next to her in a silken brooding chamber). This brood-sac contains food for the developing pseudoscorpion embryos, which grow and moult into protonymphs (juveniles that look just like adults, but smaller) before emerging.


A female Arctic pseudoscorpion, Wyochernes asiaticus, with her brood pouch. Photo: Crystal Ernst (used with permission)

Pseudoscorpions love books! Although I would like to think the little pseudoscorpion in the photograph below enjoys reading, what they really like about books is the booklice that sometimes live in them. Because pseudoscorpions can sometimes be found living between the pages of books and feeding on booklice, one common name for them is “book scorpions”.


“Book scorpion” enjoying some literature while waiting for booklice. Photo: Sean McCann

Finally, pseudoscorpions are hitchhikers! Because they are so small and don’t fly, pseudoscorpions can’t get very far on their own. To overcome this obstacle, they hitch lifts on other organisms – usually larger arthropods like beetles and flies. This particular kind of symbiosis – in which the individual doing the carrying is apparently unharmed – is called phoresis.


A longhorn beetle, Xylotrechus sagittatus, with phoretic pseudoscorpions hitching a ride on its leg. Photo: Sean McCann

Phoresis is a fantastic word that comes from Greek: phor means “carry, bear; movement” but it can also mean “thief”. Phoretic pseudoscorpions latch onto the bodies of their transportation with their pincers to steal a free ride. Some pseudoscorpions are stowaways under the elytra of comparatively gigantic harlequin beetles, and feed on phoretic mites and find mates while they travel. Piotr Naskreki has a wonderful blog post with pictures of these tiny ecosystems on a beetle’s back.


A closer view of the cluster of tiny travelers. Photo: Sean McCann

Want to find out more about pseudoscorpions? Of course you do! Here are some references and further reading from around the web:

10 Facts about Pseudoscorpions. Fantastic blog post by arachnologist Chris Buddle, who also created this great photographic key to the pseudoscorpions of Canada.

Comstock JH (1912). THE SPIDER BOOK: a manual for the study of the spiders and their near relatives, the scorpions, pseudoscorpions, whip-scorpions, harvestmen, and other members of the class Arachnida, found in America north of Mexico, with analytical keys for their classification and popular accounts of their habits. Doubleday, Page & Company. (Available from the Biodiversity Heritage Library, with wonderful illustrations)

Harvey MS (2013). Pseudoscorpions of the World, version 3.0. Western Australian Museum, Perth.

Pseudoscorpions page on the Massey University Guide to New Zealand Soil Invertebrates website. *Includes photos of pseudoscorpions’ silk retreats!

Pseudoscorpions page on the Encyclopedia of Life.

The order of the Pseudoscorpiones. Nice summary of pseudoscorpion biology by F. Schramm, with lots of photos and scholarly references.

Zeh DW & Zeh JA (1992). On the function of harlequin beetle-riding in the pseudoscorpion, Cordylochernes scorpioides (Pseudoscorpionida: Chernetidae). Journal of Arachnology, 47-51.

Sex pheromone on the silk of black widow females – more complicated than we thought

The first paper from my MSc has just been published online in the Journal of Chemical Ecology! This study was a collaboration with colleagues Sean McCann (bioassay designer, photography/videography master, and all-around awesome assistant), Regine Gries (analytical chemistry wizard), Grigori Khaskin (synthetic chemist extraordinaire), and my supernatural supervisor Gerhard Gries. If you don’t have access to the journal, you can read the accepted manuscript here.

Here’s the story of the paper.                                                                                             Note: all photos and the video are copyright Sean McCann.


A female western black widow (Latrodectus hesperus) on her web. The silk is impregnated with sex pheromones that attract males and trigger courtship behaviour.

When I started my MSc, one of the goals for my research was to “find the pheromone” of the western black widow. What does that mean exactly? Well, we already knew that female black widows (spiders in the genus Latrodectus) produce sex pheromones that are somehow incorporated into the silk of their webs. These are sort of like chemical personal ads – they can provide information about things like the species, sex, age, mating history, and body condition of the individual producing them. When a male black widow matures, his only goal in life is to find a female to mate with. He abandons his web and follows his nose (not literally – we don’t really understand much about how spiders smell but their “noses” are most likely on their legs and pedipalps!) to a nearby female’s web. Given a choice among multiple available females, male black widows will go for a well-fed virgin based on the smell of her silk alone. Once he arrives at her web, he contacts the silk and “tastes” (again with receptors on his legs/pedipalps) the pheromone, which triggers courtship behaviour. We wanted to find out the chemical structure of the female’s sex pheromone.

We had a pretty good idea of what to expect, because other researchers had already identified a pheromone of the Australian redback spider (Latrodectus hasselti). It looks like this:


N-3- Methylbutanoyl-O-(S)-2-methylbutanoyl-L-serine methyl ester. Contact pheromone of Australian redback spider (Latrodectus hasselti) females.

Male western black widows are actually attracted to the webs of redback females, implying that the structure of the pheromone is similar, if not identical, in these two species. (It’s not necessary for males to discriminate between Australian redback and North American western black widow females in nature, because they never encounter one another, so it wouldn’t be that strange if they shared the same pheromone). So we set out to analyze the silk of our western black widow females, and see if we could find a similar compound.

better frame

We persuaded females to provide us with clean silk by allowing them to build webs on glass frames for three days. We then collected the silk and extracted it for use in behavioural experiments and chemical analysis.

Some silk collection, extraction, and analytical chemistry* ensued (I’ll leave it to you to read the paper for details if you’re interested), and just as we had hoped, our western black widow females had a compound on their silk that was very similar to the redback pheromone above:


N-3-Methylbutanoyl-O-methylpropanoyl-L-serine methyl ester. Candidate pheromone of western black widow females (Latrodectus hesperus).

Not only is this chemical similar to the redback pheromone, it is also present in small amounts on redback females’ silk. So it seemed like an ideal candidate for the western black widow pheromone, and provided a potential explanation for the attraction between the two species. Now all we had to do was make a synthetic version* of the pheromone and test it on actual males.

Before we could determine whether the compound we had found was in fact the pheromone we were looking for, we needed to come up with a way of comparing its effects with the real thing. We knew that contact with a female’s silk triggers courtship behaviour, but black widow courtship is long and complex, and involves several different kinds of behaviour, some of which are very subtle. The male’s courtship dance sends vibrations through the web to the female, possibly providing information about his quality and identity (including that he is a potential mate, not a meal!). It also involves the production of copious amounts of silk by the male. This male silk carries its own pheromones, and is deposited all over the web and onto the female herself in the form of a “bridal veil” during courtship.


Male black widow (L. hesperus) engaging in silk-wrapping on a female’s web during courtship. Here the male is wrapping a section of web that he has destroyed during web reduction behaviour, which I will discuss in a future post.

We designed an experimental setup to assess male responses to silk pheromones. We constructed this high-tech device out of bamboo barbeque skewers, laboratory labeling tape, and a paper cup filled with floral foam. The skewers form a “T” and at each end of the horizontal arm we slid on little envelopes made of squares of filter paper folded in half and stapled. This simple and inexpensive device was one of the big successes of the project.


Our simple and inexpensive T-rod for testing male behavioural responses to contact silk pheromones.

The T-rod design makes it easy to compare an individual male’s response to a test stimulus on one side (for example, a female’s silk wrapped around the paper envelope) to a control (blank paper) on the other.


Wrapping silk around a filter paper for behavioural experiments.

A male spider is introduced at the base of the “T” and climbs up to the top. Once he gets to the intersection, he can decide whether to go left or right. Males almost always began the experiment by investigating both sides of the “T”, but they spent much longer in contact with the silk-wrapped paper than the blank paper. Not only that, but they spent much of their time wrapping the female silk-wrapped paper with silk of their own – obvious courtship behaviour.


A male black widow silk-wrapping on a filter paper with silk extract on it.

Knowing that males would respond to female silk in this way on the T-rod, we were now ready to confirm that the behaviour didn’t depend on the structure of the silk itself, and to see if males would respond to our synthetic candidate pheromone in the same way as they would respond to the real thing.

We prepared female silk extract using methanol as a solvent (this is the same idea as vanilla extract, but instead of extracting the flavour of vanilla beans into ethanol, we extracted the chemicals on the silk into methanol) and applied it to one of the filter papers on the T-rod, and methanol alone to the other.


We tool silk from a glass frame like the one above and submerged it in methanol to extract the pheromones into the liquid, which we then used in behavioural tests.

Males responded in exactly the same way to silk extract as they did to silk itself, spending most of their time on the filter paper impregnated with extract, and wrapping it extensively with silk. Here’s a video showing what that looks like (first at full speed, and then slowed down):

This told us that a pheromone that can be extracted from the silk triggers courtship behaviour, and the structure of the silk itself is not necessary. But when we tested male responses to our candidate pheromone (dissolved in methanol, using methanol alone as a control), things were not so clear-cut. Males spent more time on the pheromone-impregnated paper than methanol alone, but they didn’t prefer it as much as they had preferred the silk extract to methanol. A few males engaged in silk-wrapping when they made contact with our compound, but not the majority, like we had seen for the extract. This means that although our “pheromone” elicited some male activity, by itself it is not enough to consistently trigger courtship behaviour. It seems to be a pheromone component – meaning that the pheromone is a mixture of one or more compounds in addition to the one we identified, and more work will need to be done to figure out what they are.

It would have been nice to be able to say we found the pheromone. But our results suggest that the chemical communication system of black widows is more complicated than we originally thought, and even more fascinating.

In the study that identified the redback pheromone, the researchers measured male activity (the amount of time they spent moving around when in contact with a filter paper impregnated with pheromone), not courtship behaviour. It could be that this pheromone too is only one component of a more complex chemical cocktail. Like our pheromone component, it may be responsible for eliciting searching behaviour, but not quite enough on its own to consistently trigger courtship behaviour by males.

If multiple compounds are involved in these spider pheromones, they might each have different functions. We don’t yet know whether the same pheromone that attracts males is responsible for triggering courtship, or if different compounds provide different kinds of information, about things like a female’s mating status and feeding history. We have learned that the scent-based sexual communication system of black widows is likely more sophisticated than we originally thought, and that there is much more to discover!

L hesperus pair

Male and female western black widow on a female’s web.

*Neither the analytical chemistry nor the synthesis of the candidate pheromone were trivial tasks – rather they required the expertise and generous efforts of my very talented coauthors Regine and Grigori. I hope they will forgive me for glossing over the details here! 

Here’s the full citation for our paper:

Scott C, McCann S, Gries R, Khaskin G & Gries G. 2015. N-3-Methylbutanoyl-O-methylpropanoyl-L-serine Methyl Ester – Pheromone Component of Western Black Widow Females. Journal of Chemical Ecology. DOI: 10.1007/s10886-015-0582-x